——

ARPA ORDER NO. 2223

ISI/RR-78-73
November 1978

cET
S
e Cr

EI°E
N S
o,

Kt ot .l

Danny Cohen

. Mathematical Approach to
Computational Networks

ADAO 63333

'*u
:)
G AR o TP
Aomsoved o1 public relossd H
; Dietributiea Unlimited v A 1Y 1979

DDG FiLE copy

INFORMATION SCIENCES INSTITUTE

4676 Admivalty Way[Marina del Rey[California 90291
UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1511

P -
. O e 2 4 14 g NGO Lo~ 2 < e e

———

)
g
&
| &
R
| &
| B

-~k _REP

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

ISI/RR-78-73 o

2. GOVT ACCESSION NO,

3. RECIPIENT'S CATALOG NUMBER

0, T ————

Networksj
L]

Mathematical Approach to Computatlggg{_/ (;

REPORT & PERIOD COVERED

cp

/

Research

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

T
4:3) Danny(Cohen*)

LEES

5 -~
{24 DAHC 1572~ C- 308,

8. CONTRACT OR GRANT NUMBER(s)

RYA Opdevr—2223

9. PERFORMING ORGANIZATION NAME AND ADDRESS
USC/Information Sciences Institute
L676 Admiralty Way
Marina de! Rey, CA 90291

. PROGRAM ELEMEN
AREA & WORK UNIT NU“.!R’

ARPA Order #2223

1. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency
1400 Wilson Blvd.

Arlington, VA 22209

- NUMBER OF PAGES
L5

MONITORING AGENCY NAME & ADDRESS(/! different from C:)_l,fral“n‘ Oftlice)

@D ¥y, [

y R

15. SECURITY CL ASS. (of thie report)

Unclassified

Sa. D!C(L SSIFICAT!ON/DO'NGRADINO
CH

16. DISTRIBUTION STATEMENT (of this Report)

This document approved for public release and sale;

distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, il dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side I{ necessary and identily by block number)

FIR-filter, multiplication of polynomials, optima
Aperture Radar (SAR)

computational networks, design objectives, division of polynomials,

| design, Synthetic

20. ABSTRACT (Continue on reverse aide Il necessary and identity by block number)

(Over)

DD ,on"s 1473

EDITION OF | NOV 68 1S OBSOLETE
S/N 0102-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION O

407 952

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. Abstract

‘\i:j;This report deals with design principles for iterative
computational networks. Such computational networks are used for
performing repetitive computations which typically are not
data-dependent. Most of the signal processing algorithms, like
FFT and filtering, belong to this class. —

)The main idea in this report is the development of mathematical
notation for expressing such designs. This notation captures the
important features and properties of these computational
networks, and c¢an be wused for analyzing, designing, and
objectively evaluating computational networks.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ARPA ORDER NO. 2223

ISI/RR-78-73
November 1978

SO

-~ e

NS

-

Danny Cohen

R St R

UNIVERSITY OF SOUTHERN CALIFORNIA

NO 2223 .

M.mm*"f”t" 2

Mathematical Approach to
Computational Networks

|
i 3
e | |
| iii\

INFORMATION SCIENCES INSTITUTE

4675 Admiralty Way/ Marina del Rey/ California 90291
(213)822-1511

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO. DAHCIS 72 C 0308, ARPA ORDER

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE
OFFICIAL OPINION OR POLICY OF ARPA THE U S GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WIThH TIHEM.

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS UNLIMITED,

|
|
)

f

S US—————

i

CONTENTS

Abstract v

Acknowledgments vi

1.

2.

@

Introduction 1|
The Design Goals 3

The FIR-Filter Example 5
The Z Operator 5
The FIR-Filter Implementation 6
Improving this Design 8
About Notation 10
Improving the Operation Rate 1l
Another Look 14
And Another Look I5
Applying the Z-Notation to Design Evaluation 19

Multiplication of Polynomials 23
The Problem of Multiplication of Polynomials 28
Reversing the Order of X 25
Computing the Sum of Polynomial Products 26

Division of Polynomials 29
The Problem of Division of Polynomials 29
Checking the Multiplication and Division 3l
Simultaneous Multiplication and Division of Polynomials 33

Synthetic Apcrture Radar 35
The SAR Problem 35
The Design of the Network 36

Summary and Conclusions 39

ABSTRACT

This report deals with design principles for iterative computational networks.
Such computational networks are used for performing repetitive computations
which typically are not data-dependent. Most of the signal processing
algorithms, like FFT and filtering, belong to this class.

The main idea in this report is the development of mathematical notation for
expressing such designs. This notation captures the important features and
properties of these computational networks, and can be used for analyzing,
for designing, and objectively evaluating computational networks.

R . o aw

ey

——

vi

ACKNOWLEDGMENTS

I am grateful to Bob Sproull (of CMU) for encouraging me to write this
report, to Bob Kahn (ARPA) for suggesting the application of this technique to
multiplication and division of polynomials, and to Chuck Seitz (Caltech) for
his critical review of the draft of this report.

I would like to thank Lisa Moses for her skillful typing of this report, and
especially the mathematical formulae, Debe Hays for her help, Nelson Lucas
for his help in preparing the many drawings which are an integral part of

this report, and Jim Melancon for the skillful job of putting this report into
its present shape.

1. INTRODUCTION

The central point of this report is the application of a precise mathematical
notation to express computational networks. This notation captures the
concepts of arithmetic operations (such as addition and multiplication) and of
timing (e.g., delaying). Once a design is expressed by means of such a
mathematical notation, it can be evaluated objectively against a predefined set
of design objectives, like performance and cost.

The next section defines the design objectives that guide the examples in this
report. Obviously, other sets of design objectives may be used without
deviating from the spirit of the report.

Section 3 deals with the implementation of a Finite Impulse Response (FIR)
filter, a typical signal processing problem. In that section, several designs are
suggested and evaluated objectively, and the mathematical notation to express
them is developed in parallel.

Throughout this report the term "design" means the structure/architecture of
the computational network. This term is the hardware equivalent of the
software term "algorithm".

In that scction we consider first a design that follows closely the
mathematical definition of the F/R filter. Later this design is transformed
several times in order to improve it with respect tc the predefined design
objective.

In that section the graphic representations of these designs are the source of
intuition, and their mathematical representations are mainly a means for
verifying the correctness of the various transformations of the design.

In scction 4 the same technique and the same notation are applied to
multiplication of polynomials. In this section the mathematical representation
is the guiding force, and the graphic representations are used only for
dsmonstration.

In section § the same technique is used for division of polynomials and for
simultancous multiplication and division of polynomials. In this section the
mathematical notation is the only tool used, and the graphic drawings are
used for a demonstration only.

oy .

SR U

———

PSPREEIRE e

In section 6 the same technique is applied to synthetic aperture radar (SAR)
processing. Several designs: which result directly from the mathematical
definition and the notation are considered and evaluated.

It is our conviction that this mathematical notation is a very powerful tool,
complementing the intuition which is based on conventional graphic
representation.

a

P B T S =— RN~

N S N

R I TR R ¥

2. THE DESIGN GOALS

In order to achieve an optimal design, it is necessary to define the design
objectives. The following are typically considered to be important:

(a) Correctness and accuracy
(») High computation rate

(c) Low delay

(d) Low parts count

(¢) Modularity, simplicity, etc,
f) Low power

(g) Small size

(h) Low cost

Obviously, this is only a partial list. For different applications the relative
weights of these objectives may vary. It is generally accepted that (a) is the
most important, even though we seem to have evidence that this is not
always the case.

In some cases (4) is the dominant factor, in others it is (f) and (g). In this
report, we consider (a) through (¢), in that priority order.

e

‘

S SSR———

R LU ST ERRERE N

3. THE FIR-FILTER EXAMPLE

Consider the Finite Impulse Response (F/R) filter defined by
N
Yot Z % X &
i=1

This is a nonrecursive filter of the Nth order. Each output (Y) is a weighted
average of the previous N inputs (X).

Typically, the X sequence is a time series, and the (xl.) are available

sequentially, starting at X4 continuing through x, and Xq, UP to X where

typically m>>N,

The "edge-effect" at the initialization may be ignored. It is typical to
define x;# 0 for igO.

THE Z OPERATOR

Let Z be the deiay operator such that x; = % 4

(2)

In a system controlled by a central master clock, this Z operator may be
implemented by a simple register.
Stmilarly, 2" is defined by Z"x, = x, (3)

The 2Z" can be implemented by an n-stage shift register, which is a FIFO
(queue).

We will use the following properties of the Z operator:
(i) Z"F(x.y) = F(Z"x.zny) for all n, and
(if) 1f C is a constant then 2'C = C for all n.

Negative values of n mean prediction by |n| steps into the future. Since
prediction of external input is not easy to implement, it is advisable to use

only n20 when applying the z" operator to the input.

THE FIR-FILTER IMPLEMENTATION

N
The expression Y, * Z a X, (1)
i=1
N
may also be written as Y, * Z a Zixn (4)
i=1

By using operator-calculus notation, (4) may be wri a as

N
¥ = { D ha (5)
i=1

For N=4 this means Y=(alz +a Zz

3 4
2 +aaz +a4z)x (6)

which can be implemented by the network shown in figure (F1).

P P P P

z >~ 7z (G,
P P P

ZE~z|—~{ 2|2 as

X —=)=y

P P;

74 Z a,
P

z = a,

Figure (F1): The implementation of (6).

The circles in figure (F1) with the al.'s represent the multiplications by the
constants written inside them.

——

Checking this network against the design objectives reveals that

(a) Correctness: The correct expression is indeed computed, since the
2 3 4
values at P4, P.,, P9 and PlO are an, Z Xp VA X and Z X
respectively.

(b)) Computation rate: The computation rate is the reciprocal of the
computation period, which is the time needed for one multiplication
and for adding N quantities.

(¢) Dclay: The delay is one Z-period plus the computation period.

It is not simple to quantify the parts count, (d), and the modularity
objective, (e).

However, the parts count, (d), can be improved! Note that the values at

I’l. PZ' P? and P4 are all equal to Ztn. Therefore these
points could be unified. Similarly, P5. P6 and P7 could be unified, and so

can P8 and P9.

This does not change (e¢), (b)) and (c), but it does improve (d). The new
network is shown in figure (F2).

e e e e e e e . (e e S S S e) S -

X dignt 2 7 ol Z - e - 2N %

Y

Figure (F2): The improved implementation of (6).

Hence, the parts count, objective (d), is improved by the elimination of 6

delay operators, or (g) in the general case. The modularity, objective (e), is

also improved, as seen from the repeated modules, marked by dashed lines in
figure (F2).

Bt 0

IMPROVING THIS DESICN

The N-input summation is the Achilles heel of this design, mainly because it
does not comply with the modularity requirement.

In addition, the dircction of the information flow from the repeating modules
into the summation is perpendicular to the direction in which these modules
are arranged. This may cause problems with the geometry of the wiring,
both in LS/ and discrete (/C’s) implementations, and also on and between
printed circuit boards.

In addition, the required number of output lines from any grouping of a set
of several modules is proportional to their number, and this may pose severe
problems for implementation at any scale.

The way to implement N-input summation is by N-1 additions. Breaking the
summation operation into N-1 additions, and dividing them between the
modules, as shown in figure (F3), alleviates this problem.

X 4 Z Z Z pA

@) @ C)i ()
o———(H—(DH—(H—CH—=

Figure (F3): Using sequential addition.

The network shown in figure (F3) is composed of N identical modules. This
is a great improvement for the design objective (¢), modularity.

The leftmost adder, the one in the first module (with al), does not perform

any real addition operation, because one of its inputs always has the value of
zero. The only purpose of including it in this network is to improve the
modularity. Obviously, in discrete implementations, there is no need to
include it. Eliminating it trivially improves the performance and the parts

count. On the other hand, in integrated implementations, such as LS/, having
it there is a small price for reducing the number of different modules
required.

This implementation is represented by
N
s i
Y = (> a z) X (5)

In order to improve the delay involved in this computation, notice that

N N-1
(St (S) x
i=1 i=0

Only nonnegative powers of Z are used for the input values (X). The

“prediction” (Z") is applied only to the output (Y). It means that at the nth
cycle (i.e., when X, is given) the next Y value, Yneqr is available.

This is easy to observe from rewriting (6) as

Yne1 "8 %t % 1+ % 2% % % 3 (8)
and rewriting (7) as

Yp =@y %, 1 48,%, 548,% q4a,%, . (9)
Both (7) and (9) yicld the implementation shown in figure (F4).

e ot SRR (T
X Z Z Z z zN x
Ol 02 03 Q4
o —+(H)—H+ D 27! v |
]

Figure (F4): The implementation of (7). E

B

10

Note that in figure (F4) the leftmost adder (in the first module) is redundant,
as mentioned before. So is the rightmost delay (in the last module) which
does not tax the performance. It also may be eliminated in discrete
implementations, but in integrated implementations it is not advisable to do

so.

ABOUT NOTATION

Let us introduce another notation, ﬂ(x,Y), representing the multiplication of
X and Y. The purpose of this notation, compared with the usual XY notation,
is to make the multiplication operation explicit in the notation, and to

distinguish between it and the application of operators.

Note the difference between the following expressions:

N
Yn © Z ” (a‘, xn-i) | (0
i=1

v [5T) 15 ®

and the following expressions:

N-1
Yasr * 2 01 (°i+1' "n-x) (7)
1=0

N-1

zly = [T 1] (ag,y. 2)] x (10)
=0

The first ones, which require unnecessary delay, have the summation range
of [1,N], which is the "standard" way for mathematicians for expressing a
set of N objects, whereas the last two use the range [O,N-1), which seems to
be less "convenient", but yields better delay characteristics.

This illustrates the need to beware of "mental traps" that may be caused by
notation.

P —

P) y L PRI o, o~
4 s N5 : V*M‘ml,

11

IMPROVING THE OPERATION RATE

The major deficiency of all the networks considered so far is their operation
rate, objective (5). As noted before, the operation period cannot be shorter
than the time required for multiplication and addition of N quantities.

Even when the multipliers are arranged such that the multiplication time
overlaps the addition time, the addition must still propagate through N (or
N-1) stages.

Since N may be very large, it is desirable to eliminate the need for this long
propagation. This may be achieved by using the "carry-save" idea, which
uses extra delays in order to improve the data rate. In our problem we
introduce delay units between the modules, which delay the output by N
cycles but improve the computation rate.

The resulting network is shown in figure (F5).

#) #3 #4
"""" H [i - -y
z z Z Z z H Z —?—>22N"x
]]
t
]
° o Q
t '
i
S? S3 : S4 N-2
Z — Y
Z4(+) zH(+ 5 +
........ o POpp——— S —— | ROpp—p———

Figure (F5): Implementing the "carry-save" idea.

Note that the network in figure (F5) is implemented by using the very same
modules as in figure (F4) and additional delays.

Since three delays were added (for N=4), the result, which was z"v in

figure (F4), is delayed by z% and 1s now z3(z"v)-zzv. anda zV%y in
general,

12

The rigorous proof that the output is correct is its computation, Let S. denote

the output of such a network as (F5), with j modules. The output of (F5) is
therefore S= 84 . We will prove that in general the output of an N-modules
network is

N
S =8y = [E 2 Pl o™ | x (11)

From the structure of the network and the modules, as shown in figure (F6),
we get the following relation:

s;=zs;; +[](a;2%97%) x (12)

Equation (11) is proved by induction, starting from s°=0. Assume that it
holds for SN-I' and use (12) to evaluate SN’

Sy = 2 Sy_y + 1 (ay. 22V°3) x -

: [Nf GN-1-1 N (’1' Zm-z)] x 1] ("N' zzn-Z) X &

[Ng U] (o 2272) +] (o 22%2)] x »

i=1

N
i [‘Z.:lz"'" (s, ey Q.E.D. (13)

If the proof seccms too rigorous, one can obtain (11) directly by numbering
the modules from left to right. In the ith module, a is used, multiplied by

z2i-2x (X at module 1, z2X in module 2, z%X in module 3 and z®x in

module 4); the product is then delayed by ZN" (here, 7.3 for module 1, Zz
for module 2, etc.). Hence, the output, S, is the sum of these products
a,zz"zx. each delayed by ZN-‘. as indicated by (11).

— v " e

(RS S i b s AR £, 41T wA i AW .

13

Direct methods, compared with rigorous proofs, are simpler and more
intuitive, but require caution. Intuition is known to have been misleading on
occasions.

Equation (11) can be simplified to yield

Se (5™ (o 29 | x o[S 1] (o0 M)] x

i=1 i=1
M(a2)]x=2N2y (14)

Check this network against the design objectives:

(a) Correctness: The correct expression is indeed computed, as shown by
cquation (14).

(b) Computation rate: The computation period is now the time required
for a single multiplication followed by a single addition, independent
of the magnitude of N. Since it is easy to overlap the execution of
the multiplication and the addition, we do not attempt to separate
them even though this may slightly improve the computation period
and the computation rate.

(¢) Delay: The computation delay is equal to (N-2) computation cycles,
as shown by (14).

(d) PartsCount: The same number of adders and multipliers as before is
needed. However, 3 delays are needed in each module. Hence, the
total parts count is higher (i.e., worse) than before.

(¢) Modularity: The modularity is not as good as it is in the network
shown in figure (F4), which includes only components included in
the repeated modules.

In order to improve the modularity, we merge the new delays into the old
modules. In order not to introduce additional delays, we include in each
module the delay which is on its right on the "upper" line, and the delay
which is on {ts left on the "lower" line. Hence, the network implementation
now {is composed of N modules, cach as shown in figure (F6), without the
need for any additional components,

N ¥ b g
. >y Ty T ' 4 el
SNCRENT v, i RS

14

222y -z Z |+ 2z%x

Figure (F6): The ith module.

By using a network which consists of N modules as shown in figure (F6),
the rate is the best which can be achieved (without separating the
multiplication from the addition) and the delay is proportional to N.

ANOTHER LOOK

At this time we would like to ask if the reader has noticed that a very
important design decision was made without any Jjustification or even
discussion. Please take a moment and recall what has been done so far, and
look for that important design choice which was made as if no alternative
existed.

This design decision is the sequentialization of the summation-operator. We
introduced it as a left-to-right sequence of adders without considering other
possibilities.

We can use a tree-structure, with logaN depth. Here the carry chain is only
log?N long, which is better than N, but still might be too long. The same

"carry-save" approach may be used again, by using the delay operation, Z,
between every pair of successive adders.

How does this design check against the objectives?

(a) Correctness: The correct expression is indeed computed, as shown
before.

(b)) Computation rate: The rate is optimal. As before, we wish not to
split the addition from the multiplications.

e s e e e

—y

156

(¢) Delay: The delay is only log?N.

(d) Partscount: The total number of adders required for adding N
numbers is N-1, whether they are arranged in linear order or in a
tree structure. Hence no change in the number of adders is needed.

(¢) Modularity: The adders’ binary tree is again perpendicular to the data
flow and may impose a severe geometrical problem.

By using the modules shown in figure (F7), one can build this network by
having N type-A modules arranged in a linear order and (N-1) type-B
modules arranged in a binary tree structure.

—

@ z

R L —— SR Sp—

J
Type A Type B

Figure (F7): Modules for the tree implementation

AND ANOTHER LOOK

We have considered the left-to-right and the binary tree arrangements. Let
us consider next the right-to-left option. At first, it does not appear to be
different from the left-to-right, but this point is worth verifying.

Let us look at the network shown in figure (F4), with the direction of the
addition reserved. The resulting network is shown in figure (F8).

Note that the nctworks shown in figures (F4) and (F8) are identical, and
therefore the latter suffers from the same problem that the former does.

Rt i

WP

16

7 Y<—4

|
i

Figure (F8): The right-to-left addition.

2Py

The very same "carry-save" idea can be used again, by adding delays.
results in the network shown in figure (F9), which is similar to (F5).
| iR SRR =1
X Zrr™ Z Z -7
e 4+)= 2z " -

Figure (F9):

Right-to-left addition with delays.

This new network also has to be checked against the design objectives.

Starting from (a), the correctness, we compute the value of the outputsS, by
using the same technique of numbering the modules from left to right. Now

we get

Note that this is very similar to (11), except that the output of the ith

module is delayed now by Z°1 instead of by AR before, when it was
added to the right.

N
S = [gl -1 n (ai’ ZZl-Z)] X

(15)

This

2N-1

]

Mo rvﬁmm' _

s N

17

The simplification of (15) yields

N
o [zl-l ” (al' ZZi-Z)] Vi [Z n (a‘, zai-a)] X =

1 i=

TM =2

wi & Z,:V [(2 2%) | (16)
i=1

This is obviously not the desired Y. Therefore, the network shown in figure
(F9) docs not perform the correct computation.

Why does the very same approach that worked so well in the network
shown in figure (F5) fail now?

The reason is very simple indeed. In both cases the delays between the adders
(on the "lower" line) are necded in order to make the computation period
independent of N. The purpose of the other delays (on the "upper" line) is to
compensate for the delays on the "lower" line such that the addition is
performed coherently.

Since in the left-to-right network (F5) data flows on both lines (the "lower"

and the "upper") in the same direction, the same delays have to be introduced -

in both, to kecp the data "in-step".

However, in the right-to-left network (F9) data flows on these lines in
opposite directions. Hence, in order to compensate for a delay on the "lower"
line, data should be accelerated on the "upper" line. Since Z is used on the

-1

"lower", Z ° should be used on the "upper".

It is unfortunate that the Z'1 operation is a prediction which we cannot

implement in the general case. However, in this case each Z"1 happens to
follow a Z, such that each cancels the effect of the other.

Let us replace on the "upper" line all the intermodule Z operators by Z'l.
This cancels the effect of the intramodule Z operators, such that no delays are
needed on this line. :

L T PR TN Y Uy T CTINERRCIGE 2y

it

18

Figure (F10) shows the modified network.

® ® e E

s«— Z +)7 |+)z 4 Yord Z 0

Figure (F10): The modified right-to-left network.

Again, the new design has to be checked against all the design objectives.

Starting with (a), the correctness, we get

N

:)gz“‘ oy %) =2t E 2] (ap%) =

72}
1

(17)

n
r——
N

1
et
™ =
e
~
MN
N’-‘-
S
Renssamed
»
n
N
L}
e

This proves the correctness and also shows that there is no delay whatsoever.
We also know that the computation period is minimal, since it is equal to the
longest "atomic" operation. The parts count is lower than in any other
design, and the network is modular.

Based on the above, this design is optimal with respect to correctness, (a),
computation rate, (b), and delay, (¢), and it also scores highly in the parts
count, (d), and the modularity, (¢), categories.

An alternative way to draw this network is shown in figure (F11). Note
that the addition is performed, again, in the left-to-right direction, because
the order of the al.‘s is reversed.

e . S SEE LV s F 3 s Fmed

19

() ° () &3

o—= 2=+ {2 =4 r{ z | =(4+ i 2 | =(3 }—=5

.

Figure (F11): An alternative drawing of figure (F10)

APPLYING THE Z-NOTATION TO DESIGN EVALUATION

We will show that the Z-notation can be used for the evaluation of all the
networks shown before, from figure (F1) to figure (F10). We also claim that
this transformation can (and should) be performed without the aid of figures
and intuition.

Let us review the systems which we have discussed so far.

System (A) is the one which resulted directly from the definition, and is
shown in figure (F1) through figure (F3). Its representation is

N
System (A): Y= [Z n (ai. Zl)] X (18)
i=1

Using, our experience with this kind of network, we noted that one delay
could be saved, and we transformed this network into system (B), which is
the one shown in figure (F4). Its representation is

N-1
system (B): Y = [23[](ey,,.2') | x (19)
=0

Then, in order to improve the rate, we further transformed the network into
system (C), the one shown in figure (F5), whose representation is

N
System (C) Y= [272 5 N [] (p 2212) | x (20)
=1

20

Then we introduced the right-to-left addition and were able to transform this
system into system (D), the one shown in figure (F10), whose representation
is

N
System (D): Y =2 Z zi-1 n (ai, X) (21)
i=1

Next, we compare and evaluate these systems, by using their representations,
without referring to the figures,

(a) Correctness: From the representation above it is evident that all of
these systems perform the corrcct computation.

() Rate: Both (A) and (B) require adding N quantities at once.
Therefore, their computation period is equal to the time required for
a multiplication followed by the addition of N numbers, where (C)
and (D) require only the time neceded for a multiplication and a

single addition.

(¢) Delay: In (A) ¥, is available in the same cycle as x, . We use this
for delay reference, and denote it as zero delay.

In (B) the entire expression, on the right-hand side, is multiplied by
the delay Z. This means that the output of the network that
computes this expression has to be delayed one cycle in order to have
the same delay as in (a), the zero delay. Hence, without this
additional delay, the output, Y, is advanced by one cycle, and is equal
to -1 cycle. This means it is earlier than (A) by one cycle.

On the other hand, (C) requires z(N-2) 41 order to achieve the same
delay. Since this is not feasible to implement, the Y computed by
this network 1is delayed by (N-2) cycles, compared with (A).

(D) has, obviously, the same delay as (B). Thus, (D) also is earlier
than (A) by one cycle.

In summary, in the general case, the delays are
System implementation A B C D

Delay (in cycles) 0 -1 N-2 -1

21

However, even though both (B) and (D) have the same delay 1in
cycles, (D) has a smaller delay since its cycle is shorter. Hence, in

this implementation, yn+1 is available a shorter time after xn is

given, compared with (B).

(d) Partscount: The modular implementations, including the additional
delays and the additional adders (which may be required on either
end of the network in order to achieve the modularity), are compared
with each other.

All four implementations require N multipliers, and N adders (or N
multiply-&-add units). They differ only in the delay requirements.

Both (A) and (B) require N delays for X.

(C) requires 2N delays for X, and N delays for the partial sums of
the products. These delay units require, in general, more capacity
(bits) than for delaying X, especially if fixed point arithmetic is
used.

(D) requires N delays for the partial sums of the products.

(¢) Modularity and simplicity: All four implementations are equally
modular, with the same level of complexity.

The rating of these systems is summarized in the following table. § > T
means that § is better than T,

(a) Correctness (A) & (B) = (C) = (D)
(b) Data rate (c) = (D) > (A) = (B)
(¢c) Delay (D) > (B) > (A) = (c)
(d) Part count (A) & (B) > (D) > (C)
(¢) Modularity (A) = (B) = (C) = (D)

‘This shows that (D) is the best design, if performance is the major objective,
but (B) is the best design if the parts count is the major one.

23

4. MULTIPLICATION OF POLYNOMIALS

The previous example, the FI/R filter, was designed by using intuition to
operate on computational networks represented by drawings, The Z-notation
could be used, but is less intuitive.

Next we compute multiplication and division of polynomials, and design
computational networks to implement these operations. However, now we use
the Z-notation for the design of the networks, and use diagrams only to
demonstrate the design.

THE PROBLEM OF MULTIPLICATION OF POLYNOMIALS

Let A(f) and X(f) be polynomials in ¢, of degrees ¢ and m, respectively:

c m
av=Yat ; xweYx,d (22)
i=0 i=0

Let Y(f) be the product polynomial of A(f) and X(?).

m+c (4 m
YW =Yy s (T) (3 x 0) (23)
i=0 =0 i=0

By equating the coefficients of li we get

¢ S
Yn=2ax, (%0 for <0 and 1>m) (24)
=0

We are interested in finding the coefficient set of the polynomial Y(¢), from
the given coefficient sets of A(f) and X(!). We are not interested in
evaluating any of these polynomials for particular values of .

In many applications A(f) is a fixed polynomial, and X(f) is a variable one.
The computation problem is to compute the m+c coefficients of Y(¢) from the
glven m coefficients of X(f) and the fixed ¢ coefficients of A(t).

24

Since (24) is identical to (1), except for the boundary condition and the
range, the same networks that compute the FI/R filter can also perform this
polynomial multiplication.

Since (24) contains a, one more stage is needed, and the computation is

performed such that ¥, is available in the cycle when X, is given. In other
words, the delay now is O, instead of the -1 cycle as we had before.

Figure (F12) shows the network for this computation. Note that it starts
with ao (compared with al in the previous network) and that its output is Y

(compared with z 'y before). Because of the boundary conditions it is
fmportant to clear all the delay units before starting the operation, and to
provide x; = O for i =m+1, m+2....m+c. When these values are given, the last ¢

values of Y are obtained. Since there are m+c values of Y, and only m values
of X, this "runout" operation is indecd expected.

The initial clearing can be performed, Just like the runout operation, by
proving the nctwork with ¢ zero-values for X. During this period the
obtained Y values are invalid.

Obviously, this network is represented by

Y = {; 2 [] (2, x) (25)
=0

(% Oc-) e ay @
0 + Z + Z Jon ° Z l=(+ z ° Y

Figure (F12): Polynomial multiplication.

25

REVERSING THE ORDER OF X

In several applications it is preferred that x_ is available before X1 In

n
these cases X is leading and x, trailing.

If this order is uscd, then the operator Z has a predicting role, and z" is a
delay. Since (25) is implemented with positive powers of Z, another
implementation which uses only negative powers of Z is needed.

Multiply (25) by 2™ and get
c ¢ ¢
2Cy = Z zi-¢ ﬂ (al‘ x) = Z z'(c'i) ﬂ (ai' x) = z Z'Jn (ac_J. x) (28)
=0 i=0 J=0

Since this has the same structure as (25) the same network can be used to
perform this operation, except for the following three conditions:

(i) 2! is used instead of Z. However, since Z meant a delay before, and

z" means a delay now, this is no real change of function, only of
labeling.

(ii) The order of the ai's is reversed, because we have now a
we had a, before.

-4 where

(ifi) The output now is Z °Y instead of Y, as before.

This means that when X is given to the network, Ynse is available.
Therefore, when x_, the leading coefficient of X, is made available to the
network, then —_— the Jeading coefficient of Y, is computed. The resulting

network is shown in figure (F13).

m'

% i el Ie-1 ' e

PO PRl Sewen Wi P (+ =2y

Figure (F13): Polynomial multiplication (most significant term leading).

26

COMPUTING THE SUM OF POLYNOMIAL PRODUCTS
Consider the problem of computing W(¢), which is defined by
W() = A() X() + B(r) Y(r) 27)

where A(f) and B(f) are of degree ¢, and X(¢) and Y(f) are of degree m.
Obviously, W(t) is of degree m+c.

By using (26) we may get
(4 (4
2°w = 329 (ag.pX) + E2791(b.y¥) (28)
J=0 J=0

This yields, for ¢=3, the network shown in figure (Fi4). However, (28) may
also be written as

27w = ‘é z (3. ;%) +[1(bc_y¥)] (29)
J=0 :

which yields the combined network shown in figure (F15).

() o () O

0 ° - + -y ° ‘z" °
° Z-°w
B e [5 O e B 00 O (7 s ©
O & o i

Figure (F14): Sum of polynomial products.

X

= ——————

a7

o
N
'
N
[

Figure (F15): Sum of polynomial products, combined.

-7 "W

e — T S

.

T g v

29

-

5. DIVISION OF POLYNOMIALS

THE PROBLEM OF DIVISION OF POLYNOMIALS
Polynomial division is obviously the inverse of the polynomial multiplication.
The division is defined in the usual way, by the relation

Y() = AW X(1) (a # 0) (30)

where A(f) and Y(f) are given polynomials of degree ¢ and m+c, respectively.
X(r), which is to be determined, is a polynomial of degree m, |

Division, unlike multiplication, can be performed only by starting with the
most significant (highest power) of Y. This nonsymmetry is due to requiring
only that the leading coefficient of A(!) must not be zero. {

Therefore, we use (26) and not (25) in order to invert the multiplication.

Equation (26) states 1
¢
-C = -i
7%t e T flln o n) (26)
i=0
Since the operation has to be performed from the most significant to the least :
significant term, at any stage in the computation of X(¢), the higher order Vi

“terms of X(f) must already be known.

Therefore, we seek to express X by using A, Y and Z-IX for positive values
of {, but not including =0,

Extract Z°X from (26) and get

2° Y =] (a X) + i 2 [1 (agpr X) (31)
i=1

Pe— Y

e A AN i

30

Isolate it and get

” (ac. X) =2CY+ zc: Z.i n (-ac-i_ x) (32)

In order to share the 2°¢ operation, this can be transformed into
(o
3 -1
o0 %) =22 [(00 %) 6,
i=1
where 6‘[=0 if i #c¢ and ec,c =1, i

Since a, # 0, X can be expressed explicitly by

X = ac-1 i z! [n ('ac-i' X) +€. Y] (34)

’

i=1 E

The network for performing this computation is shown in Figure (F16). 1

X

c e ‘

Figure (F16): Polynomial division, for c =3

31

Since X is synchronized with Y, x, is computed and is available at the same
cycle when y, is given. Since the first coefficient of Y is o and the first
cocfficient of X is X during the first ¢ cycles no X; is output.

Before starting this operation all the Z units are cleared. Then the Y
cocfficients are given, one at a time (i.e., one per cycle). The first ¢ cycles
are initialization cycles, and no output is expected. During the next m+1
cycles the coefficients of X, with X, leading and x, trailing, are available.

At this point the Z units include the same data that was present in the Z
units of the network shown in Figure (F13), just before the multiplication
process started.

Since all the Z units in this network were cleared before the multiplication,
all the Z-units should contain zeroes after the division. If they are discovered
to contain any nonzero value, then Y(f) was not a product of A(f) by any
polynomial.

In fact, the values in the ¢ delay-units are the coefficients of the remainder
polynomial, R{t), whose degree is less then m. This polynomial is defined by

R(r) = Y(t) - A(r) X(t) (35)

CHFECKING THE MULTIPLICATION AND THE DIVISION

In order to check (which is weaker than "verify"). these operations, we prove
that {f we use these networks first to perform the multiplication of any
arbitrary polynomial, X(f), by the given polynomial, A(t), and then to perform
the division of this product by the same given polynomial, A(t), then the
same arbitrary polynomial X(f) resulits.

Let Y(f) be the result of the multiplication of X(¢f) by A(f), and let S(f) be the
result of the division of Y(f) by A(f). We will prove that S(r) = X(1).

kd

R

32

From (32)
s =ac-l [Z‘:Y"'zcz-ln(acl's)]l=
i=1
substitute (26)
c c
o [Z T (e) - Z 7 oo 9]+
i=0 i=1

n

Y
(2]

1

i
frm———

)

(o]
>
+
=
1]
_Mn
~N
1
e
~

o
0
1
=

>
N’

]

e
n
2
~N
1
ot
N

0
(2]

1
—

17,]
N—r
SRR

/]

(o
sxsa ' T (o, x5} e
i=1
(o4
=S+ac'lac(x-s)+a lZZ'il—l(aci,xs)=
i=1

=S+ ac'l g I (ac_i, x-s) (386)
i=0
<
Hence St (ac_i, x-s) =0 (37)
i=0

Since the polynomial A(f) is known not to be the zero polynomial because
a,# 0, the polynomial S(f) must be equal to X(t). Q.E.D.

——

33

SIMULTANEOUS MULTIPLICATION AND DIVISION OF POLYNOMIALS

Define S(f) to be the polynomial obtained by multiplying the arbitrary
polynomial X(f) by the given polynomial A(f), and then by dividing this
product by another given polynomial, B(f), also of degreec, such that bC #0.

By following (36) we get

C (o
& = bc-1 [z Z-i n (ac-i' x) + 2 Z—i ” ('bc-i’ S)] 2
i=0 i=1

hc.1 { % Ll Z Z-i [ﬂ (ac-i' X) i ” ('bc-i’ S)] } e
i=1

The network which performs this computation is shown in figure (F17).

° O] aj 03
° - + ! + - +
6 : -b, -b, by’

Figure (F17): The S=(A X)/B implementation, for ¢ = 3.

e, F
- > o
st SN i i =3 M—_L

i

~ TG s e

35

6. SYNTIIETIC APERTURE RADAR

The next example discussed in this section is taken from synthetic aperture
radar (SAR) data processing. This SAR application will be first introduced,
and later a design for its implementation will be discussed.

THE SAR PROBLEM

Consider a moving platform, such as an aircraft or a spacecraft, travelling
along a straight line. Every period of (NT)-time it transmits a radar burst,
whose echo 1s recorded N times, T period apart. Typical numbers are N=1000
and T=100 nanoseconds, which correspond to Fs=10MHz.

Let § be the serial number of a given burst, and let j be the serial nui: - i
a given echo return inside it. The value of j varies between O and N-1. . he
value of i starts at 0 and is continuously increased, as long as the platfcom is
in motion. The data D(i,f) is recorded at the time t=(Ni+j)T.

We use the notation k = (i,j) = Ni+j, which is very useful because the data
is recorded in a one-dimensional serial sequence. We omit the 7 from the
notation. Similarly, the Z operator is a delay by this unit,

Note that we revert to the original notation, where the input (k) precedes the

ifnput D(k+1). Hence, Z is again the delay operator, and Z" is the predictor,
which should not be applied to external input data.

We refer to ({,*) as columns, and to (*,j) as rows. Hence, there are N rows,
which are parallel to the platform trajectory, and the columns which
correspond to the radar bursts are perpendicular to the trajectory.

The purpose of collecting the data set {D(i,f)) is to use it for the computation
of the "surface function" F(i,f), defined by

m
F(i,) =) a, D(i-k,J) (37)
k=-m

for the fixed set of coefficients { a, |-m < k s +m).

e et

36

This is a weighted-average of D(i,j) with its neighbors, of the same jfth row,
up to m columns on each side.

The definition (37) is an extreme simplification of the actual SAR problem.

For simplicity many crucial details are omitted. Among these complex details
arc the dependence of the {a;} on its position inside the burst (its j value)

and the effects of the angle between the trajectory of the platform and the
motion of the planet. These and other details are very important for the
actual SAR process, but do not contribute to the ideas discussed in this report.
THE DESIGN OF THE NETWORK
When applying the Z operator to the data we get

Zh(i,f) = D@, j-1) for §> O and ZD(,0) = D(i-1,N-1) (38)

and ZNI)(i,j) = D(i-1,j) (39)

Substitute (39) in (37) and get

m
G = 3 [(a,. 2°N) g (40)
=-m
m 2m
or F = [ST (ak. z”‘)] D= [el W § (al", sz)] D=
k=-m k=0
M-1
o e WS e B (41)
k=0
where M=2m41 and a; is defined by a=a, ..
Since we cannot implement the Z_mN operation, the best which we can

compute {s Z"'NF. which is F lagging by m(NT) time behind the input data

sequence D. This is to be expected, since the definition of F(ij), (37),
requires data which is m-bursts on each side (past and future).

Since (41) 1s very similar to (1), (9) and to (21), we already know how to
compute it. Equation (41) can also be written as

N e,

e

37

M-1
2™ = [3] (ag 2*V)] 0 (42)
k=0

which {s basically like, say (8), except that ZN is used here and Z is used
there. Hence following the third scction (the FI/R filter example) we get the
fastest implementation represented by

M-1
2™ F =3 2N] (a;. 0) (43)
k=0

It is left for the interested reader to check this design against the design
objectives, (a) through {e).

As mentioned in an earlier section, the ZN operators in (43) are more
expenstve than those of (42), because they store products, which usually
(especially in fixed-point arithmetic implementations) have more bits of
information than the raw data signal, D,

The reason for moving the Z operators from the raw data to the partial sum
of the products, where it is more expensive, is to sep-rate the adders in order
to avold the long carry-chain pPropagation, in order to improve the
computation rate,

However, this separation can be achieved by a single Z, for any value of N.
Therefore, in order to achieve the improved computation rate, without
"overpaying" in parts, the following implementation can be used:

M-1
™M rx |5 2] (a e le (44)
k=0

Note that the three occurrences of Z in (44) correspond to three different
meanings: the first, on the left-hand side, represents the delay in the
computation of F (relative to D) and does not represent any device. The
second Z, in Zk. represents the registers used for holding partial sums of

products, and the third, in Zk(N'”, represents the (N-1)-stage shift register
uscd for delaying the inpuot signal, D.

Figures (F18), (F19) and (F20) show the implementations, for m=2, of (42),
(43) and (44), respectively.

L gra) Bl

-~

38

R

L.. T e —
3 o
|v o ,7. =} .
" b - r :
] ' N —
' ' | '
(£ ." " < N e
m & B L~ K
! ! P .
] 1] (]
| i i
! ! !
! i H
i |
H £ . " i +
! # i i 3
] 1] 1
i H
e e -A--$
e, i ' —~ — ~
N Z m « = N “
- 4 il I i "
|
. 1 1 - o
) i (=] (=] i
' 1
- ' |] o =
) | e %:) 4 9] ° ¥ o
-] — Ead
hm 2 m A -
H = H) = =
' Q ! o = @
1 — - -
! = ! & = Z ~N m
1 (3] ! ~N o N . @
i i ! : — - 4
‘ 2 | | = 4 B
' g | = = .
: - ! - ! - !
H o i s Q i + @
" “ = u “ = = " s A
|5 3 &= i i = =
“ n . S = — 4 : [. g
! > I _—~ M H _—~ -2 -
k7 “) _ “ =) 5 4
' H — ' - | -— 3 N N
1 ! fae 1 N i S VLN = =
' i ~ $! et ! > P
' i ' '
" n e ‘ : e : =
[}] "v W m - m H =l
; “ = \ ! = : i 3
1 {7 _,)i B |) =
: " =~ : s : i : _ %
i H
[z " I i ‘
| | | " i
' i { ' . P '
" ' , _ B O
; “ A { L2t |
i i { ! ! i
' i i : ! i
¢ ! ; ! i
S - | | |
4 ¥ . : '
o Ak]] ! “
| v, i
m/

39

7. SUMMARY AND CONCLUSIONS

We have shown that the mathematical notation commonly used for the
specification of a computation may implicitly suggest some design features
that are not necessarily desired.

We sugpest that the mathematical definition be transformed into the
computational network representation notation, which can be evaluated
according to the important design objectives.

Furthermore, this representation can be transformed symbolically, as opposed
to graphically, in order to generate alternative networks, which should also
be evaluated according to the design objectives.

These transformations should continue until no further improvement is
achieved.

Furthermore, we suggest that it is feasible to implement an automatic system
for performing these symbolic transformations and evaluations, and highly
recommend {t.

